Photouncaging Nanoparticles for MRI and Fluorescence Imaging in Vitro and in Vivo

Edakkattuparambil S. Shibu,† Kenji Ono,‡ Sakiko Sugino,† Ayami Nishioka,§ Akikazu Yasuda,♭ Yasushi Shigeri,♭ Shin-ichi Wakida,♭ Makoto Sawada,‡ and Vasudevanpillai Biju†,*

†Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan, ‡Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan, §Faculty of Engineering, Kagawa University, 2217-20, Takamatsu, Kagawa 761-0395, Japan, ♭Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and †PRESTO, Japan Science and Technology Agency, Tokyo 332-0012, Japan

ABSTRACT Multimodal and multifunctional nanomaterials are promising candidates for bioimaging and therapeutic applications in the nanomedicine settings. Here we report the preparation of photouncaging nanoparticles with fluorescence and magnetic modalities and evaluation of their potentials for in vitro and in vivo bioimaging. Photoactivation of such bimodal nanoparticles prepared using photouncaging ligands, CdSe/ZnS quantum dots, and super paramagnetic iron oxide nanoparticles results in the systematic uncaging of the particles, which is correlated with continuous changes in the absorption, mass and NMR spectra of the ligands. Fluorescence and magnetic components of the bimodal nanoparticles are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elemental analyses using energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). Bioconjugation of the nanoparticles with peptide hormones renders them with biocompatibility and efficient intracellular transport as seen in the fluorescence and MRI images of mouse melanoma cells (B16) or human lung epithelial adenocarcinoma cells (H1650). Biocompatibility of the nanoparticles is evaluated using MTT cytotoxicity assays, which show cell viability over 90%. Further, we combine MRI and NIR fluorescence imaging in C57BL/6 (B6) mice subcutaneously or intravenously injected with the photouncaging nanoparticles and follow the in vivo fate of the nanoparticles. Interestingly, the intravenously injected nanoparticles initially accumulate in the liver within 30 min post injection and subsequently clear by the renal excretion within 48 h as seen in the time-dependent MRI and fluorescence images of the liver, urinary bladder, and urine samples. Photouncaging ligands such as the ones reported in this article are promising candidates for not only the site-specific delivery of nanomaterials-based contrast agents and drugs but also the systematic uncaging and renal clearance of nanomaterials after the desired in vivo application.

KEYWORDS: quantum dots · fluorescence · photouncaging · iron oxide · multimodal nanoparticles · MRI

Multimodal and multifunctional nanoparticles receive considerable attention in the recent past owing to their growing applications such as multiplexed detections both in vitro and in vivo. Combination of fluorescence and magnetic modalities in a single nanometer-scale probe enables one to develop smart bimodal nanomaterials, which find applications in bioimaging, photothermal and photodynamic therapies, magnetic separation, rapid and dynamic intracellular patterning, detection and isolation of multiple tumors, and gene and drug delivery. Fluorescent probes other than organic dyes used in the construction of multimodal nanoparticles (NPs) include semiconductor quantum dots (QDs), lanthanide complexes, and up-conversion NPs. Among these materials, QDs receive considerable attention owing to their unique properties such as broad absorption and narrow emission bands, large molar extinction coefficient, and exceptional photostability. The different magnetic probes included in multimodal imaging probes are derived from iron oxide, FePt alloy, cobalt, ferritin, and gadolinium chelates. However, the exact machinery for the degradation of such NPs and their removal from biological systems after imaging and therapy remains mostly unknown. To look into this...
issue, we develop photouncaging bimodal nanoparticles (PUNPs) in which fluorescent and magnetic components are caged by photouncaging ligands, and evaluate the photouncaging properties of the ligands and PUNPs. Here, photouncaging ligands refer to those which could be easily degraded by applying light without involving any chemical reagent. Recently, photouncaging molecules find interesting applications in different aspects of chemical biology such as spatially and temporally controlled delivery of drugs and biomolecules. Among the various photouncaging molecules known so far, coumarinylmethyl esters are extensively investigated due to their efficient photolysis. Common techniques for the preparation of multimodal NPs include co-encapsulation, epitaxial heterogeneous growth, precipitation, covalent conjugation and electrostatic assembly. Among these methods, covalent conjugation and electrostatic assembly of contrast agents or drugs in silica NPs, semiconductor QDs, gold NPs, liposomes, polymer NPs, carbon nanotube, fullerenes or graphene are widely appreciated. Biotin derivatives prepared using coumarinylmethyl ester allow us to assemble multiple fluorophores on the surface of magnetic NPs and obtain fluorescent and magnetic PUNPs. First, we demonstrate the synthesis of two novel photouncaging biotin derivatives, namely, coumarinylmethyl biotin ester (3) and coumarinylmethyl bis-biotin ester (5), and then extend to the fabrication of PUNP composed CdSe/ZnS QDs and Fe3O4 NPs using 5, which is characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) methods. Further, PUNPs are conjugated with a peptide hormone allatostatin I, which facilitates intracellular delivery of PUNPs in mammalian cells. Photouncaging of 3, 5 and PUNP is investigated using time-dependent UV–vis absorption spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry. The formation of coumarinylmethyl alcohol and biotin during the photodegradation of 3 or 5 confirms the photouncaging steps. Evaluation of the cytotoxic effects of 3, 5, peptide-labeled PUNP and photouncaged products in human lung epithelial adenocarcinoma cells (H1650) and mouse melanoma cells (B16) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays shows over 90% viability, which indicates the active metabolism of cells labeled with PUNPs or its components. Finally, we use peptide-conjugated PUNP as an efficient contrast agent for MRI and fluorescence imaging of B16 cells and C57BL/6 (B6) mice. The enhanced magnetic and fluorescence contrasts collected from cells treated with or mice injected with PUNP confirm the bimodal nature of the NP. Further, MRI and fluorescence images of the liver, urinary bladder and urine samples collected from the mice at different time intervals are recorded and analyzed for validating the renal clearance of PUNPs.

RESULTS AND DISCUSSION

Figure 1A and B shows steps involved in the synthesis of 3, 5, and PUNPs. Details of organic chemical reactions involved in the preparation of 3 and 5 and their characterization are given in the Experimental Methods section. During the fabrication of PUNPs, concentrations of streptavidin-functionalized Fe3O4 NPs and 5 are set at 1:100 ratio, such that streptavidin pockets in Fe3O4 NPs are completely occupied by 5 and provide photouncaging biotin-functionalized Fe3O4 NPs. Here, the stepwise addition of Fe3O4 NPs to a large excess of 5 prevents any ligand-mediated aggregation of Fe3O4 NPs. Free ligands are successively removed by dialysis against a membrane for 2 kDa. Subsequently, the biotinylated Fe3O4 NPs are added in five portions to streptavidin-functionalized QDs in 1:10 ratio, which assemble ca. 10 QDs on each Fe3O4 NPs through the photouncaging biotin ligand. Any QD left free in the reaction mixture is removed overnight by repeated magnetic separation using a bar magnet. Details of the preparation of PUNPs are given in the Experimental Methods section. Bright-field optical image (C), fluorescence image (D), and T1- (E) and T2-weighted (F) MRI taken for solutions of phosphate buffered saline (PBS) (i), CdSe/ZnS QDs (ii), Fe3O4 NPs (iii) and PUNPs (iv) are given in Figure 1C–F. The intense magnetic and fluorescent contrasts from PUNPs in addition to the integrated features of QDs, 5 and Fe3O4 NPs in the optical absorption and photoluminescence spectra (Supporting Information, Figure S1) show the bimodal nature of PUNPs. The MR and fluorescence contrasts are not due to the presence of free Fe3O4 and QDs, which is confirmed by obtaining morphology of PUNPs using SEM. The size-distribution and shape of PUNPs are shown in Figure 1G. PUNP is further characterized by recording and analyzing STEM micrographs (Figure 1H), elemental maps (Figure 1I–L), EDX spectra (Figure 1M), and XPS (Figure S2). The morphology and the elemental composition (Fe, O, Cd, and Se) analyzed using EDX and XPS confirm the structure and bimodal nature of PUNPs.

To evaluate the photouncaging nature of 3, 5 and PUNP, we have studied the kinetics of photouncaging using time-dependent UV–vis absorption spectroscopy, 1H NMR spectroscopy, and MALDI-TOF mass spectrometry. Schematic presentation of photouncaging and the underlying mechanism are shown in Figure 2A. First, 1 μM solution of 3 in DMF:water (10:1) mixture is illuminated with either 400 nm light from a Xe lamp or 400 nm laser (7 mW/cm²), and the UV–vis absorption spectra of the solution are recorded at equal time intervals. As seen in Figure 2B, a continuous drop in the absorbance ca. 410 nm and evolution of a new
band ca. 275 nm through an isosbestic point shows the photouncaging reaction. Conversely, the absorption spectrum of a control sample kept in the dark remains essentially intact (Figure 2C). Plots of absorbencies vs time at 410 and 275 nm during the course of photouncaging are shown in the inset of Figure 2B, which follow the first order kinetics. Using the number of reacted molecules, which is calculated from the molar extinction coefficient and the difference in the absorbencies, and the number of absorbed photons, which is calculated from the excitation laser intensity and photon energy, we estimate the quantum efficiency of photouncaging reaction at ∼4.8%. To further evaluate the photouncaging reaction, we recorded and analyzed the MALDI-TOF mass spectra of 3 before (Figure 2D) and after (Figure 2E) photoirradiation. Samples for MALDI-TOF mass analyses were loaded in the standard α-cyano-4-hydroxycinnamic acid matrix. As expected, the molecular peak of 3 (m/z = 453) in a photoactivated sample is completely disappeared, which is associated with the formation of the photoproducts shown in Figure 2A. These changes to the mass spectra are in good agreement with the photouncaging process as seen in the absorption spectra (Figure 2B).

The photouncaging nature of allylic ester and the formation of primary alcohol make it possible for us to further evaluate the photouncaging reaction by following the time-dependent 1H NMR spectra of 3 dissolved in deuterated DMSO and exposed to 400 nm laser (Figure 2F). The downfield shift of the broad doublet at 5.33 ppm due to coumarinylmethyl protons (Figure 2H) and appearance of a broad triplet at 6.24 ppm (Figure 2G) due to the spatial coupling of allylic proton with the newly formed hydroxymethyl group confirm the photouncaging reaction. More interestingly, the photouncaged sample in the NMR tube exposed to UV light shows white light emission, which is resolved into individual colors using band-pass filters as seen in Figure 2I. We attribute the white light emission to aggregation and the formation of excimer of hydroxymethylcoumarin, which is facilitated by its simple molecular structure when compared with the biotinylated caged form 3. Likewise, the photouncaging of 5 is characterized using time-dependent UV—vis absorption spectroscopy (Supporting Information). The photouncaging of such allylic esters follow the photo S_{N}1 reaction, which is the solvent-assisted photoheterolysis from the lowest excited singlet state (S_{1}) via radiative relaxation, nonradiative relaxation, and heterolytic bond cleavage into the singlet ion pair state (S_{1} \rightarrow \text{CM-A}^{+} + \text{COO}^{-}). The ion pair decays by either charge recombination to the ground state (CM-A) or charge separation to carbocation (CM^{+}) and carboxylate ion (A^{-}). Finally, reaction of the carbocation with water molecule and subsequent deprotonation results in the formation of alcohol. On the basis of the formation of photouncaged coumarin alcohols and biotin as seen in NMR and mass spectra, we attribute that the photouncaging of 3 and 5 follows the photo S_{N}1 reaction.

Figure 1. Synthesis and characterization of PUNP. (A and B) Scheme for the synthesis of (A) 3 and 5, and (B) PUNP: (a) ethyl-4-chloroacetoacetate, methanesulfonic acid, RT, 2 h; (b) 1,3-dibromopropane, DBU, 150 °C; (c) K_{2}CO_{3}, DMF, 100 °C; (d) biotin, DBU, dry ethanol, 135 °C; (e) K_{2}CO_{3}, DMF, 150 °C; (f) 1,3 dibromopropane, DBU, acetonitrile, 90 °C. (C) Optical image, (D) photoluminescence image, and (E) T_{1}-weighted MRI and (F) T_{2}-weighted MRI of solutions of (i) PBS, (ii) QD, (iii) Fe_{3}O_{4} NP and (iv) PUNP. (G) FESEM image, (H) STEM image, (I–L) elemental maps, and (M) EDX spectrum of PUNP.
Figure 2. Photouncaging. (A) Scheme for SN\(^1\) photouncaging reaction of substituted coumarins under 400 nm excitation; (B and C) temporal evolution of UV–vis absorption spectra of 3 under (B) photoactivation at 400 nm or (C) dark. Inset: the kinetics of photouncaging reaction. (D and E) MALDI-TOF mass spectra of 3 before and (E) after photouncaging. (F) \(^1\)H NMR spectra of 3 dissolved in DMSO-\(d_6\) (bottom) before photoirradiation at 400 nm and (bottom to top) with progressive irradiation for 5 min each. (G and H) Enlarged \(^1\)H NMR spectra of (G) allylic proton and (H) coumarinylmethyl protons. (I) Fluorescence images of uncaged products excited with UV light and collected through different band-pass filters.

To evaluate the photouncaging of PUNP, we have recorded and analyzed the FESEM images of PUNP after illumining with 340 nm light from a Xe lamp. Interestingly, we observed fragmented NPs rather than larger spheroid nanostructures in the photoirradiated samples. The photouncaging nature of 3 and 5 and the formation of small nanostructures in photoirradiated PUNP samples indicate the successful photouncaging of PUNPs. To evaluate the potentials of PUNPs and the ligands for biological applications under NIR excitation, we have obtained the two-photon action cross section of 3 using the equation, \(\delta_t = \delta_i[S,\Phi,\phi_c]/S,\Phi,\phi_c]\).\(^{43}\) The subscript \(s\) and \(r\) stand for sample and reference. \(S\) is the signal collected by a PMT detector, \(\Phi\) is the fluorescence quantum yield, \(\phi\) is the overall fluorescence collection efficiency of the experimental apparatus, and \(c\) is the number density of the molecules in the solution. The calculated two-photon action cross section of 3 is 16 GM units, which is comparable to the cross section (~21 GM) of the standard rhodamine B.\(^{44}\)

The combination of MRI and fluorescence contrast agents in a single entity allows us to obtain combined MRI and fluorescence images in vitro and in vivo. At first, we tested the bimodal imaging and cytotoxic effects of PUNP in cultured human and mouse cells. We employed allatostatin I, a peptide hormone present in insects and crustaceans, as the endocytosis machinery.\(^{45–47}\) Allatostatin is biotinylated using 3-sulfo-N-hydroxysuccinimide ester of biotin and subsequently conjugated to streptavidin moieties in PUNPs at 1:5 molar ratio (PUNP:allatostatin). Detailed procedures for the biotinylation of allatostatin and bioconjugation of PUNPs are given in the Experimental Methods section. Mouse melanoma cells (B16) cultured up to 60% confluence are incubated with a 5 \(\mu\)M solution of PUNP-allatostatin conjugate in Dulbecco’s Modified Eagle Medium (DMEM) without phenol red or fetal bovine serum (FBS) for 1 h at 4 °C, and washed three times with PBS followed by treatment for 10 min with a 5 nM solution of the nucleus staining dye Syto 21. After the treatment, the cells are washed three times with PBS and the medium is exchanged with DMEM supplemented with 10% FBS. The intracellular delivery of PUNP in B16 cells is investigated using fluorescence microscopy. The excitation light used during imaging are 400 nm fs laser for Syto 21 and QDs and 532 nm cw laser for QD alone. Figure 3A shows the fluorescence image of B16 cells obtained by exciting at 400 nm and collecting the fluorescence signals through a 580 nm long-pass filter. Here, the nuclei of the cells appear orange due to the fluorescence tailing of the green fluorescent Syto 21, and the red fluorescence in the cytoplasm is contributed by the intracellular PUNPs. Figure 3B is an overlay image of the images obtained by exciting at 400 nm and collecting the fluorescence signals through a 510–550 nm band-pass filter for Syto 21 and a 580 nm long-pass filter for PUNPs. Figure 3C is an overlay of optical transmission and fluorescence images, which clearly indicates endocytosis of PUNPs in B16 cells. Large area fluorescence images of cells are given in the Supporting Information. We further compared the efficiency of allatostatin-mediated endocytosis of PUNPs with that of EGF-mediated endocytosis of QDs. Figure 3D is the overlaid fluorescence images of human lung epithelial adenocarcinoma cells (H1650) treated with QD-EGF conjugate. In Figure 3D, the nuclei are stained green using Syto 21 (Figure 3E), and the red fluorescence in the cytoplasm comes from QDs. Figure 3F is an overlay of optical transmission and fluorescence images, which clearly indicates an efficient intracellular delivery of QD-EGF conjugates in H1650 cells. On the other hand, EGF conjugates of QDs or PUNPs are not efficiently delivered in B16 cells,
which we attribute to the poor expression of EGFR receptors in B16 cells. To address the toxicity of QDs, Fe$_3$O$_4$ NPs, PUNPs and the photouncaging products, we have measured the metabolic activities of cells using MTT cytotoxicity assay. Detailed procedure of MTT assay is given in the Experimental Methods section. Here, the MTT assays of CdSe/ZnS QDs (Figure 3G), Fe$_3$O$_4$ NPs (Figure 3H), PUNPs (Figure 3I), 5 (Supporting Information), and the photoproducts (Supporting Information) show over 90% cell viability under a range of concentrations, which is indicative of the active metabolism of cells labeled with PUNP or its constituents. Nevertheless, impairment of cell membrane and other vital biological structures by PUNP are not completely reflected in the MTT assay.

To evaluate the potentials of PUNP to be an in vitro bimodal imaging probe, we have recorded MRI and fluorescence images of cells labeled with PUNP-allatostatin conjugate. First, B16 cells cultured up to 90% confluence are incubated with 5 nM solution of the conjugate in DMEM without phenol red or FBS for 1 h at 4 °C as described above. The cells are then washed three times with PBS, harvested using trypsin, further washed three times with DMEM supplemented with FBS, and the labeled cells are collected by centrifugation. Figure 3J and K shows bright-field and fluorescence images of B16 cell pellets (i) without and (ii) with labeling using PUNP–allatostatin conjugate. Figure 3L and M shows T$_1$- and T$_2$-weighted MRI of Fe$_3$O$_4$ NPs, PBS, and cell pellets labeled with and without PUNPs. The dark contrast of the labeled cells in T$_2$-weighted MRI is due to the contrast enhancement provided by PUNPs under the longer echo time ($T_E$) and repetition time ($T_R$) in the T$_2$ mode. The dark MRI contrast provided by PUNP is promising for discriminating labeled cells from unlabeled cells, lipid, water and fat which provide bright contrast.

To evaluate the potentials of PUNP for in vivo bimodal imaging, we have recorded the MRI and fluorescence images of C57BL/6 (B6) mice subcutaneously or intravenously injected with PUNPs. At first, anesthesia was administered intraperitoneally by using pentobarbital sodium (40 mg kg$^{-1}$).

Following sedation, 10 nM solutions of QDs, Fe$_3$O$_4$ NPs, PUNPs and PBS are subcutaneously injected at different places in a B6 mouse as seen in Figure 4A and B. In vivo fluorescence images are collected immediately.
after the injection by exciting with band-pass filtered light (green-yellow light from a Xe lamp). Photographs of the mouse collected through a 580 nm long-pass filter show fluorescence signals at excellent signal-to-noise ratios from areas where QD (control) or PUNP was injected (Figure 4A). Similarly, T1-weighted MRI of the mouse shows subcutaneous contrast enhancement at areas injected with Fe3O4 NP (control) or PUNP (Figure 4B). Further, to test the potentials of detecting fluorescence and MRI contrasts of PUNPs in deep buried tissues such as the liver, we injected PUNPs (10 nM, 250 μL) intravenously in a C57BL/6 (B6) mouse that is different from the one examined above, and obtained MRI and fluorescence images at different time intervals after the injection. T1-weighted MRIs of the mouse obtained at t = 0 to t = 24 h as seen in Figure 4C–F show contrast enhancement in the liver. Interestingly, PUNP accumulated in the liver within 30 min post injection and subsequently cleared by the renal excretion within 24 h as seen in Figure 4D–F. The poor penetration of visible excitation light and the emitted fluorescence through tissues is one of the major challenges associated with in vivo fluorescence imaging. To address this issue, we have used PUNP composed of NIR-emitting QDs (QD705) and Fe3O4 NPs. NIR fluorescence of PUNPs allows us to not only obtain enhanced fluorescence contrast in vivo (Figure 4H) but also follow the clearance of intravenously injected PUNPs from the body. MRI and fluorescence images of mice collected at different time intervals show initial (30–60 min) contrast enhancements in the liver (Figure 4D), decrease of the contrasts within 24 h (Figure 4F and H), and concomitant contrast enhancements in the urinary bladder (Figure 4H and I). The enhanced MRI and fluorescence contrasts of the bladder show renal clearance of PUNP within 48 h post injection. Further, we have collected urine samples from the mice before and at different time intervals after the intravenous injection of PUNPs. Urine sample collected ca. 24 h post injection shows enhanced fluorescence (Figure 4J, iii), which is consistent with the MRI and fluorescence contrast enhancement in the urinary bladder ca. 24 h post injection (Figure 4H and I). Further, the fluorescence of urine sample collected after 48 h show less fluorescence. The renal clearance of ca. 30 nm diameter PUNP though the anatomical and physiological barrier (<25 nm) provided the Bowman’s capsule in the renal corpuscle suggests a possibility that the particles are separated into individual components by hepatocytes during the initial accumulation in the liver. In short, the NIR-fluorescence of QDs and the MRI contrast of Fe3O4 NPs in PUNP are useful for the combined in vivo fluorescence and MRI imaging and analyzing the clearance of intravenously injected NPs.

CONCLUSION

By using light as the innovative tool, we introduce a simple strategy for the fragmentation of photouncaging ligands that bond magnetic and fluorescent components in photouncaging nanoparticles. The photouncaging processes are elucidated by observing systematic changes in the absorption, mass and NMR spectra of the photouncaging ligands as well as the SEM image of the nanoparticles. Successively, the photouncaging nanoparticle is applied as bimodal contrast agent for the combined MRI and NIR fluorescence imaging of melanoma cells and B6 mice.
**Experimental Methods**

All the chemicals and solvents are analytical grade and used without further purification. CdSe/ZnS QDs (PL maximum ~655/705 nm) are obtained from Invitrogen Corporation and Fe$_3$O$_4$ NPs from NANOCS. 4-Chlororesorcinol, ethyl-4-chloroacetate, methanesulfonic acid, biotin and 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) are obtained from Sigma Aldrich. K$_2$CO$_3$ and 1,3-dibromopropene are obtained from Tokyo Chemical Industries.

1H and 13C NMR measurements are carried out in a JEOL 400 MHz spectrometer. MALDI/LDI-TOF mass measurements are carried out using a BRUKER Microflex spectrometer. Fluorescence images of labeled cells are acquired in an inverted optical microscope (Olympus IX70) equipped with a 40× objective lens, a 2.5× telescopic lens, band-pass/long-pass filters for QDs and Syto 21 dye, and an electron multiplying charge coupled device (EMCCD, Andor Technology) or a CCD camera (Olympus). Excitation light sources used for fluorescence imaging are 400 or 532 nm laser. FESEM images are acquired using a JSM-6700FZ (EMCCD, Andor Technology) or a CCD camera (Olympus). Excitation time intervals show the renal clearance of the nanoparticles within 48 h. Photouncaging ligands such as the ones reported in this article boast great potentials for the fabrication of photocleavable tool boxes such as multimodal and multifunctional nanoparticles for bioimaging and cancer therapy. 48–52 Such photouncaging ligands facilitate not only the site-specific delivery of contrast agents and drugs, but also the systematic uncaging of nanoparticles into fragments and the subsequent renal clearance after the desired application. Although the penetration of excitation light into deep-buried tissues is limited, the strategy of photouncaging for the photocontrolled delivery and clearance of nanomaterials is promising for in vivo biological applications that involve light, such as fluorescence imaging, photothermal imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy.

---

**Synthesis of 2.** A mixture of 4-chlororesorcinol (14.4 g, 100 mmol) and ethyl-4-chloroacetate (199.2 g, 120 mmol) dissolved in methanesulfonic acid (160 mL) is stirred for 4 h at room temperature and subsequently poured into ice-cold water with constant stirring for 1 h. The off-white precipitate formed is filtered, copiously washed with ice-cold water, and dried with constant stirring for 1 h. The crude product is purified by column chromatography on silica gel (200–400 mesh) using 2% methanol in hexane. The crude product is precipitated from the reaction mixture by the addition of hexane (100 mL) is heated to reflux for 3 h. 4 is precipitated from the reaction mixture by the addition of hexane (100 mL). The crude product is purified by column chromatography on silica gel (200–400 mesh) using DCM as the eluent to give 80% of 4. 4H NMR (400 MHz, CDCl$_3$) δ = 1.46 (m, 2H), 2.35 (t, 2H), 2.65 (m, 1H), 2.59 (m, 1H), 7.24 (s, 1H), 7.82 (s, 1H), 8.23 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ = 29.32, 35.34, 38.36, 45.53, 53.59, 64.55, 66.10, 101.17, 167.84; FT-IR (ν$_{max}$) = 3241, 2941, 2843, 1736, 1474, 1418, 1324, 1262, 1223, 1195, 1155, 994, 859, 752, 662, 569, 444 cm$^{-1}$; MALDI-TOF (C$_{10}$H$_{8}$Cl$_{2}$O$_{3}$), m/z = 365.

**Synthesis of 5 from 2.** A mixture of 2 (1 g, 2.75 mmol), biotin (2 g, 8.2 mmol), and K$_2$CO$_3$ (1.2 g, 8.28 mmol) is suspended in DMF and refluxed for 1 h. Unreacted biotin and K$_2$CO$_3$ in the reaction mixture are precipitated by the addition of chloroform. Finally, 5 is precipitated out by the addition of ice-cold water. The crude product is copiously washed with water and dried in a vacuum desiccator to give ~30% of the desired product.

**Synthesis of 5 from 3 and 4.** A mixture of 3 (1 g, 2.20 mmol), 4 (0.9 g, 2.47 mmol) and K$_2$CO$_3$ (1 g, 7.7 mmol) is suspended in DMF and refluxed for 6 h. The residue is filtered-off and the product is precipitated from the filtrate by the addition of ice-cold water. The crude product is copiously washed with ice-cold water and dried in a vacuum desiccator to give ~50% of the desired product. 1H NMR (400 MHz, DMSO-d$_6$) δ = 3.16 (m, 1H), 4.56 (m, 1H), 5.16 (s, 1H), 5.56 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$) δ = 59.70, 104.30, 108.11, 112.30, 117.30, 126, 153.89, 154.15, 157.66, 161.87, 163.98, 173.80; FT-IR (ν$_{max}$) = 3297, 1702, 1611, 1553, 1504, 1543, 1430, 1399, 1342, 1291, 1170, 1138, 1068, 1036, 941, 891, 738, 643, 534 cm$^{-1}$; MALDI-TOF (C$_{11}$H$_{10}$BrCl$_3$O$_{3}$), m/z = 356.

**Preparation of PUNP.** Fabrication of PUNP involves two steps. In the first step, one of the biotin moieties in 5 is conjugated to streptavidin-functionalized Fe$_3$O$_4$ NPs by the addition of a 200 mM aqueous solution (50 μL) of streptavidin-functionalized Fe$_3$O$_4$ NPs.
Fe₃O₄ NPs to a 20 μM solution of 5 in DMSO (50 μL). This mixture is incubated at 37 °C for 2 h, and the excess ligand is removed by dialysis against a membrane for 2 kDa. In the second step, bioin-functionalized Fe₃O₄ NP prepared in the first step is conjugated with streptavidin-functionalized CdSe/ZnS QDs. Here, 50 μL of bioin-functionalized Fe₃O₄ NP (100 nM) is added in five portions to a QD solution (50 μL, 1 μM) and incubated at 37 °C for 2 h. This incubation resulted in the formation of PUNP in which 10 QDs are conjugated to each Fe₃O₄ NP through the photouncaging ligand 5.

Preparation of PUNP – Allatostatin Conjugate. Lyophilized allatostatin (GenScript Corporation) reconstituted into a 0.75 mM solution of coumarinylmethyl alcohol (0.1, 1, and 10 μM) of allatostatin (Genscript Corporation) reconstituted into a 0.75 mM aqueous solution of biotin-3-sulfo-NHS ester at 25 °C. Allatostatin is purified by gel filtration on a sephadex G-25 column (Sigma), dialyzed with sterile-filtered water into a 250 mM (100 μL) solution, and added to a 50 mM aqueous solution (100 μL) of PUNP. This mixture when reacted at 25 °C for 30 min provided the PUNP—allatostatin conjugate.

Cytotoxicity Assay. Cytotoxicity of CdSe/ZnS QD, Fe₃O₄ NP, 5, PUNP and photocoupled products was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium chloride (MTT) assay using an MTT cell proliferation kit (Roche Diagnostics). Here, ca. 1 × 10⁶ human epithelial lung adenocarcinoma cells (H1650) are inoculated per plate into 96-well tissue culture plates (FALCON) containing DMEM supplemented with 10% FBS, and incubated for 48 h at 37 °C. The cells are then washed with PBS and the medium is exchanged with DMEM without FBS. The cells are supplemented with different concentrations of coumarinylmethyl alcohol (0.1, 1, and 10 μM), 5 (0.01, 0.1, and 1 μM), Fe₃O₄ NP (1, 10, and 100 nM), CdSe/ZnS QD (0.1, 1, and 10 nM), or PUNP (0.1, 1, and 10 nM). After 24 h incubation, the cells are washed three times with PBS and subsequently treated with MTT solution (10 μL, 5 mg/mL) for 4 h. The treated cells are lysed by adding 100 μL SDS in 0.01 M HCl (100 μL/well), and the absorbance of formazan is determined at 550 nm in a microplate reader and the cell of the reduction of MTT by the mitochondrial reductase enzyme.

REFERENCES AND NOTES
